Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 12(8): e16008, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38631890

RESUMEN

We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a Gi/o protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-ß-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O3), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O3 caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O3 exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O3.


Asunto(s)
Asma , Ozono , Neumonía , Animales , Ratones , Masculino , Ozono/efectos adversos , Adiponectina/farmacología , Pulmón , Neumonía/inducido químicamente , Líquido del Lavado Bronquioalveolar , Receptores Acoplados a Proteínas G , Asma/genética , Quimiocinas/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología
2.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R921-R934, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283092

RESUMEN

Interleukin (IL)-11, a multifunctional cytokine, contributes to numerous biological processes, including adipogenesis, hematopoiesis, and inflammation. Asthma, a respiratory disease, is notably characterized by reversible airway obstruction, persistent lung inflammation, and airway hyperresponsiveness (AHR). Nasal insufflation of IL-11 causes AHR in wild-type mice while lung inflammation induced by antigen sensitization and challenge, which mimics features of atopic asthma in humans, is attenuated in mice genetically deficient in IL-11 receptor subunit α-1 (IL-11Rα1-deficient mice), a transmembrane receptor that is required conjointly with glycoprotein 130 to transduce IL-11 signaling. Nevertheless, the contribution of IL-11Rα1 to characteristics of nonatopic asthma is unknown. Thus, based on the aforementioned observations, we hypothesized that genetic deficiency of IL-11Rα1 attenuates lung inflammation and increases airway responsiveness after acute inhalation exposure to ozone (O3), a criteria pollutant and nonatopic asthma stimulus. Accordingly, 4 and/or 24 h after cessation of exposure to filtered room air or O3, we assessed lung inflammation and airway responsiveness in wild-type and IL-11Rα1-deficient mice. With the exception of bronchoalveolar lavage macrophages and adiponectin, which were significantly increased and decreased, respectively, in O3-exposed IL-11Rα1-deficient as compared with O3-exposed wild-type mice, no other genotype-related differences in lung inflammation indices that we quantified were observed in O3-exposed mice. However, airway responsiveness to acetyl-ß-methylcholine chloride (methacholine) was significantly diminished in IL-11Rα1-deficient as compared with wild-type mice after O3 exposure. In conclusion, these results demonstrate that IL-11Rα1 minimally contributes to lung inflammation but is required for maximal airway responsiveness to methacholine in a mouse model of nonatopic asthma.


Asunto(s)
Asma , Ozono , Neumonía , Humanos , Ratones , Animales , Cloruro de Metacolina/efectos adversos , Ozono/toxicidad , Interleucina-11/efectos adversos , Asma/genética , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/complicaciones , Receptores de Interleucina-11 , Líquido del Lavado Bronquioalveolar
3.
Exp Physiol ; 103(12): 1692-1703, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30260066

RESUMEN

NEW FINDINGS: What is the central question of this study? When do alterations in pulmonary mechanics occur following chronic low-dose administration of bleomycin? What is the main finding and its importance? Remarkably, we report changes in lung mechanics as early as day 7 that corresponded to parameters determined from single-frequency forced oscillation manoeuvres and pressure-volume loops. These changes preceded substantial histological changes or changes in gene expression levels. These findings are significant to refine drug discovery in idiopathic pulmonary fibrosis, where preclinical studies using lung function parameters would enhance the translational potential of drug candidates where lung function readouts are routinely performed in the clinic. ABSTRACT: Idiopathic pulmonary fibrosis (IPF) is the most widespread form of interstitial lung disease and, currently, there are only limited treatment options available. In preclinical animal models of lung fibrosis, the effectiveness of experimental therapeutics is often deemed successful via reductions in collagen deposition and expression of profibrotic genes in the lung. However, in clinical studies, improvements in lung function are primarily used to gauge the success of therapeutics directed towards IPF. Therefore, we examined whether changes in respiratory system mechanics in the early stages of an experimental model of lung fibrosis can be used to refine drug discovery approaches for IPF. C57BL/6J mice were administered bleomycin (BLM) or a vehicle control i.p. twice a week for 4 weeks. At 7, 14, 21, 28 and 33 days into the BLM treatment regimen, indices of respiratory system mechanics and pressure-volume relationships were measured. Concomitant with these measurements, histological and gene analyses relevant to lung fibrosis were performed. Alterations in respiratory system mechanics and pressure-volume relationships were observed as early as 7 days after the start of BLM administration. Changes in respiratory system mechanics preceded the appearance of histological and molecular indices of lung fibrosis. Administration of BLM leads to early changes in respiratory system mechanics that coincide with the appearance of representative histological and molecular indices of lung fibrosis. Consequently, these data suggest that dampening the early changes in respiratory system mechanics might be used to assess the effectiveness of experimental therapeutics in preclinical animal models of lung fibrosis.


Asunto(s)
Bleomicina/administración & dosificación , Pulmón/efectos de los fármacos , Mecánica Respiratoria/efectos de los fármacos , Animales , Líquido del Lavado Bronquioalveolar/citología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/tratamiento farmacológico
4.
Physiol Rep ; 5(24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29242308

RESUMEN

Inhalation of ozone (O3), a gaseous air pollutant, causes lung injury, lung inflammation, and airway hyperresponsiveness. Macrophages, mast cells, and neutrophils contribute to one or more of these sequelae induced by O3 Furthermore, each of these aforementioned cells express chemokine (C-C motif) receptor-like 2 (Ccrl2), an atypical chemokine receptor that facilitates leukocyte chemotaxis. Given that Ccrl2 is expressed by cells essential to the development of O3-induced lung pathology and that chemerin, a Ccrl2 ligand, is increased in bronchoalveolar lavage fluid (BALF) by O3, we hypothesized that Ccrl2 contributes to the development of lung injury, lung inflammation, and airway hyperresponsiveness induced by O3 To that end, we measured indices of lung injury (BALF protein, BALF epithelial cells, and bronchiolar epithelial injury), lung inflammation (BALF cytokines and BALF leukocytes), and airway responsiveness to acetyl-ß-methylcholine chloride (respiratory system resistance) in wild-type and mice genetically deficient in Ccrl2 (Ccrl2-deficient mice) 4 and/or 24 hours following cessation of acute exposure to either filtered room air (air) or O3 In air-exposed mice, BALF chemerin was greater in Ccrl2-deficient as compared to wild-type mice. O3 increased BALF chemerin in mice of both genotypes, yet following O3 exposure, BALF chemerin was greater in Ccrl2-deficient as compared to wild-type mice. O3 increased indices of lung injury, lung inflammation, and airway responsiveness. Nevertheless, no indices were different between genotypes following O3 exposure. In conclusion, we demonstrate that Ccrl2 modulates chemerin levels in the epithelial lining fluid of the lungs but does not contribute to the development of O3-induced lung pathology.


Asunto(s)
Asma/metabolismo , Lesión Pulmonar/metabolismo , Ozono/efectos adversos , Receptores de Quimiocina/genética , Animales , Asma/etiología , Asma/genética , Líquido del Lavado Bronquioalveolar/citología , Quimiocinas/genética , Quimiocinas/metabolismo , Femenino , Genotipo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lesión Pulmonar/etiología , Lesión Pulmonar/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores CCR , Receptores de Quimiocina/metabolismo , Mucosa Respiratoria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA